39 1,cho biểu thức
A=√x/√x-1 – 2√x-1/√x(√x-1)
tìm điều kiện xác định rồi rút gọn A
tính giá trị của A với x=36
tìm x để |A|>A
2, cho biểu thức M= (1/ mới nhất
$begin{array}{l} 1)a)Dkxd:x > 0;x ne 1\ A = dfrac{{sqrt x }}{{sqrt x – 1}} – dfrac{{2sqrt x – 1}}{{sqrt x left( {sqrt x – 1} right)}}\ = dfrac{{sqrt x .sqrt x – 2sqrt x + 1}}{{sqrt x left( {sqrt x – 1} right)}}\ = dfrac{{x – 2sqrt x + 1}}{{sqrt x left( {sqrt x – 1} right)}}\ = dfrac{{{{left( {sqrt x – 1} right)}^2}}}{{sqrt x left( {sqrt x – 1} right)}}\ = dfrac{{sqrt x – 1}}{{sqrt x }}\ b)x = 36left( {tmdk} right)\ Rightarrow sqrt x = 6\ Rightarrow A = dfrac{{6 – 1}}{6} = dfrac{5}{6}\ c)left| A right| > A\ Rightarrow A < 0\ Rightarrow dfrac{{sqrt x – 1}}{{sqrt x }} < 0\ Rightarrow sqrt x – 1 < 0\ Rightarrow sqrt x < 1\ Rightarrow x < 1\ Vậy,0 < x < 1\ 2)a)Dkxd:x ge 0;x ne 9\ M = left( {dfrac{1}{{sqrt x – 3}} – dfrac{1}{{sqrt x + 3}}} right):dfrac{3}{{sqrt x – 3}}\ = dfrac{{sqrt x + 3 – sqrt x + 3}}{{left( {sqrt x – 3} right)left( {sqrt x + 3} right)}}.dfrac{{sqrt x – 3}}{3}\ = dfrac{6}{{sqrt x + 3}}.dfrac{1}{3}\ = dfrac{2}{{sqrt x + 3}}\ b)M > dfrac{1}{3}\ Rightarrow dfrac{2}{{sqrt x + 3}} > dfrac{1}{3}\ Rightarrow dfrac{{6 – sqrt x – 3}}{{3left( {sqrt x + 3} right)}} > 0\ Rightarrow 3 – sqrt x > 0\ Rightarrow sqrt x < 3\ Rightarrow x < 9\ Vậy,0 le x < 9\ c)M = dfrac{2}{{sqrt x + 3}}\ Do:sqrt x + 3 ge 3\ Rightarrow dfrac{1}{{sqrt x + 3}} le dfrac{1}{3}\ Rightarrow dfrac{2}{{sqrt x + 3}} le dfrac{2}{3}\ Rightarrow M le dfrac{2}{3}\ Rightarrow GTLN:M = dfrac{2}{3},Khi:x = 0 end{array}$
cattuong
0
Đáp án:
$begin{array}{l}
1)a)Dkxd:x > 0;x ne 1\
A = dfrac{{sqrt x }}{{sqrt x – 1}} – dfrac{{2sqrt x – 1}}{{sqrt x left( {sqrt x – 1} right)}}\
= dfrac{{sqrt x .sqrt x – 2sqrt x + 1}}{{sqrt x left( {sqrt x – 1} right)}}\
= dfrac{{x – 2sqrt x + 1}}{{sqrt x left( {sqrt x – 1} right)}}\
= dfrac{{{{left( {sqrt x – 1} right)}^2}}}{{sqrt x left( {sqrt x – 1} right)}}\
= dfrac{{sqrt x – 1}}{{sqrt x }}\
b)x = 36left( {tmdk} right)\
Rightarrow sqrt x = 6\
Rightarrow A = dfrac{{6 – 1}}{6} = dfrac{5}{6}\
c)left| A right| > A\
Rightarrow A < 0\
Rightarrow dfrac{{sqrt x – 1}}{{sqrt x }} < 0\
Rightarrow sqrt x – 1 < 0\
Rightarrow sqrt x < 1\
Rightarrow x < 1\
Vậy,0 < x < 1\
2)a)Dkxd:x ge 0;x ne 9\
M = left( {dfrac{1}{{sqrt x – 3}} – dfrac{1}{{sqrt x + 3}}} right):dfrac{3}{{sqrt x – 3}}\
= dfrac{{sqrt x + 3 – sqrt x + 3}}{{left( {sqrt x – 3} right)left( {sqrt x + 3} right)}}.dfrac{{sqrt x – 3}}{3}\
= dfrac{6}{{sqrt x + 3}}.dfrac{1}{3}\
= dfrac{2}{{sqrt x + 3}}\
b)M > dfrac{1}{3}\
Rightarrow dfrac{2}{{sqrt x + 3}} > dfrac{1}{3}\
Rightarrow dfrac{{6 – sqrt x – 3}}{{3left( {sqrt x + 3} right)}} > 0\
Rightarrow 3 – sqrt x > 0\
Rightarrow sqrt x < 3\
Rightarrow x < 9\
Vậy,0 le x < 9\
c)M = dfrac{2}{{sqrt x + 3}}\
Do:sqrt x + 3 ge 3\
Rightarrow dfrac{1}{{sqrt x + 3}} le dfrac{1}{3}\
Rightarrow dfrac{2}{{sqrt x + 3}} le dfrac{2}{3}\
Rightarrow M le dfrac{2}{3}\
Rightarrow GTLN:M = dfrac{2}{3},Khi:x = 0
end{array}$